

## Improvements to modelling tools for Type Ia Supernovae – A focus on ratiation transport

Alexander Holas F. Callan, C. Collins, R. Pakmor, F. Röpke, L. Shingles, S. Sim

Heidelberg Institute for Theoretical Studies

June 6<sup>th</sup> 2022

### Content

1. Introduction

2. Identifying SNe Ia Progenitors with Radiative Transfer Models

3. Improvements to Radiative Transfer

4. Testing ARTIS-NLTE

## Introduction – SNe Ia in a nutshell

- Thermonuclear explosions of carbon-oxygen (CO) white dwarfs (WDs)
- Progenitor scenario(s) still unclear



(Credit: ESO/L. Calçada)

## Introduction – SNe Ia in a nutshell

- Thermonuclear explosions of carbon-oxygen (CO) white dwarfs (WDs)
- Progenitor scenario(s) still unclear
- "Zoo" of observable subclasses
- Various progenitor scenario candidates:
  - sub M<sub>Ch</sub> models (double detonation, merger, etc.)
  - M<sub>ch</sub> models (pure deflagration, delayed detonation etc.)







- Ejecta distribution
- Velocities
- Temperature
- ...



- Velocities
- Temperature

- Abundance distribution

• ....



• ...



Hydro-simulations of deflagrations in  $\rm M_{Ch}$  WDs



Hydro-simulations of deflagrations in M<sub>ch</sub> WDs



- Full-star simulations with varying central densities using the LEAFS code
- Goal: Finding progenitors of the SNe lax subtype

Hydro-simulations of deflagrations in M<sub>ch</sub> WDs



Hydro-simulations and derived quantities (e.g. produced <sup>56</sup>Ni mass) provide first insight into feasibility as progenitor scenario

- ⇒ Conclusive statements require synthetic observables through radiative transfer simulations
  - ⇒ Radiative transfer code **ARTIS** (Sim 2007; Kromer Sim 2009)

# Synthetic light curves:

- Good agreement for some models
- Red bands tend to show faster decline than observed
- Red bands capture rise time better than blue bands



- Good agreement at later epochs for brighter models
- Poor agreement at early epochs for all models

#### ⇒ Systematic differences in spectroscopic evolution not accounted for by models



- Good agreement at later epochs for brighter models
- Poor agreement at early epochs for all models

#### ⇒ Systematic differences in spectroscopic evolution not accounted for by models



#### ⇒ Inaccuracies due to LTE treatment in radiative transfer needs to be quantified!

So far:

Radiative transfer with **approximate NLTE** ionisation balance

⇒

Only valid until ~ **few months** after explosion

⇒

So far:

Radiative transfer with **approximate NLTE** ionisation balance

Only valid until ~ **few months** after explosion

Now:

Radiative transfer with full **NLTE** 

#### Improvements included with the new full-NLTE ARTIS version:

- Radiation field treatment
- Atomic dataset
- NLTE ionization and population solver
- Non-thermal energy deposition
- Non-thermal degradation (Spencer-Fano)

#### Improvements included with the new full-NLTE ARTIS version:

- Radiation field treatment
- Atomic dataset
- NLTE ionization and population solver
- Non-thermal energy deposition
- Non-thermal degradation (Spencer-Fano)



Improvements included with the new full-NLTE ARTIS version:



So far:

Radiative transfer with **approximate NLTE** ionisation balance

Now:

Radiative transfer with full **NLTE** 

⇒

⇒

Only valid until ~ **few months** after explosion

- Valid until the nebular phase
- → Not yet well tested for early times
- → Differences to LTE approximation at early times need to be quantified

#### Goal: Investigating the asymmetry of sub-M<sub>ch</sub> WD explosions



Models show more asymmetry than is observed!



(Credit: J. Morán-Fraile)

→ Use well explored **sub-M**<sub>Ch</sub> **WD explosion** scenario to further test differences between radiative transfer methods.

#### Setup:

- Sub-M<sub>ch</sub> carbon-oxygen WD explosions for 3 initial masses
- Systematically
  offset ignition spots
- Ignition artificially triggered



First results: (Using TARDIS; Kerzendorf & Sim 2014)



A. Holas et al. Improvements to modelling tools for Type Ia Supernovae

First results: (Using TARDIS; Kerzendorf & Sim 2014)



A. Holas et al. Improvements to modelling tools for Type Ia Supernovae